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The weakly nonlinear amplitude growth of slightly oblique instability waves in an
incompressible free shear layer is shown to be first influenced by three-dimensionality
in a limiting case for large Reynolds number when a particular order relationship is
chosen between the spanwise scale and the amplitude of the small disturbance. The
formulation resembles that for purely two-dimensional motion but includes the effect
of vortex stretching in the nonequilibrium, nonlinear, viscous critical layer.

1. Introduction
The instability of a two-dimensional incompressible free shear layer has been

the subject of numerous studies over many years. Of particular concern here is
a recent series of papers containing self-consistent asymptotic descriptions of the
weakly nonlinear spatial growth of small disturbances to the shear layer. Goldstein
& Leib (1988), Goldstein & Hultgren (1988), and Hultgren (1992) considered two-
dimensional disturbances, while Goldstein & Choi (1989) described the growth of a
three-dimensional disturbance, for a simple harmonic spanwise variation, i.e. for a
pair of oblique waves having the same amplitude and frequency, travelling at equal
but opposite angles from the direction of the mean flow (and thus representing a
standing wave in the spanwise direction). Hereafter these references will be referred
to as GL, GH, H, and GC, respectively. A hyperbolic tangent velocity profile was
assumed in GL and GH; a more general profile was allowed in H and GC. Inviscid
flow was considered in GL and GC; the effect of small viscosity was included in
GH and H, and in an extension of GC given by Wu, Lee & Cowley (1993). In the
two-dimensional case the formulation is expressed in terms of a nonlinear partial
differential equation for the vorticity in the critical layer, where the flow speed is close
to the wave speed, coupled with a jump condition for the velocity change across the
critical layer. The three-dimensional result, on the other hand, is quite different, with
the amplitude growth expressed in terms of a nonlinear integro-differential equation.

If the spanwise wavenumber is allowed to approach zero in the formulation of
GC or Wu et al. it is found that the two-dimensional case is not recovered. The
present note introduces a third special limiting case, with a slow spanwise variation.
In this limit the spanwise momentum equation expresses a balance between pressure
and inertia terms, and the spanwise scale is such that a stretching term appears in
the vorticity equation. If this scale is increased or decreased, the results are found to
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be consistent, respectively, with the two-dimensional formulation or the fully three-
dimensional formulation. That is, the results can be said to ‘match’ asymptotically
in terms of differently scaled wavenumber parameters. The intention of this note is
only to show the equations needed for this new limiting case, and to indicate briefly
how the formulations given in the references are approached when the corresponding
length scale increases or decreases.

2. Formulation
We suppose that a laminar shear layer between two parallel uniform streams of

incompressible fluid is subjected to a nearly two-dimensional disturbance of small
amplitude. The upper and lower streams have velocities U(1) and U(2), respectively,
with U(1) > U(2). The rectangular coordinates x, y, and z lie, respectively, in the
direction of the undisturbed streams, normal to the shear layer, and along the shear
layer in the direction normal to the undisturbed flow. The corresponding velocity
components are u, v, and w. The spatial coordinates, the time t, and the velocity
components have been made non-dimensional with δ0, δ0/∆, and ∆, respectively,
where δ0 is a shear-layer thickness (which might be related to a momentum thickness
or a vorticity thickness at a reference location) and ∆ = (U(1) −U(2))/2 is a reference
velocity. The Reynolds number R = δ0∆/ν, where ν is the kinematic viscosity, is taken
to be large. Wherever convenient, the notation here and below is taken from that of
the references.

The disturbance amplitude in the main part of the shear layer is O(ε), where ε� 1,
and the wavenumber component in the x-direction is α = O(1). The disturbance is
taken to be nearly neutral, so that the frequency is close to the neutral value S0 and
the wave speed is approximately S0/α. The undisturbed velocity in the shear layer
is u = U(y), taken to be smooth and monotonic, and with the one inflection point
located at y = 0. At the critical layer, the undisturbed velocity and its derivative are
Uc = S0/α and U ′c; the critical layer is located at y = 0 and so U ′′c = 0. Solutions
are sought in the limit as ε → 0 and R → ∞, such that the Haberman parameter
λ = 1/(ε3/2R) is held fixed. This is the well-known condition for the appearance of
both nonlinear and viscous effects in the equations describing the flow in the critical
layer; nonlinearity enters because the disturbance occurs near the neutral point. The
thickness of the critical layer is O(ε1/2), the frequency S = S0 + ε1/2S1 + · · · differs from
the neutral value by O(ε1/2), and the slow spatial growth of the disturbance occurs on
a larger length scale expressed in terms of the slow variable x1 = ε1/2x. The critical
layer is thus a nonlinear, non-equilibrium, viscous critical layer. The appropriate
transverse coordinate for the critical layer is Y = y/ε1/2; a coordinate fixed relative
to a disturbance moving at the actual wave speed S/α is ζ = x− (S/α)t.

The three-dimensional dependence of the imposed disturbance is assumed to be
mild, in the sense that the variation in the z-direction occurs on a large length
scale. That is, we consider oblique waves propagating at small angles from the
undisturbed flow direction. It is found that the effect of vortex stretching first appears
in the critical layer when the spanwise wavelength is O(ε−1/2), and so the appropriate
spanwise coordinate is z1 = ε1/2z. This conclusion can be reached by imagining that
we start with the two-dimensional problem and then introduce an extremely slow
spanwise variation with scale that is allowed to decrease gradually from infinity
until new features appear in the equations. Except for the spanwise coordinate and
spanwise velocity, the scales are taken to be the same as for the two-dimensional case.
If the scaled spanwise coordinate is βz, where β � 1, the z-momentum equation for
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the critical layer shows that w = O(ε1/2β) and the vorticity equation shows that a
stretching term enters when wβ = O(ε3/2); it then follows that β = O(ε1/2).

In the main part of the shear layer, outside the critical layer, the largest pertur-
bations have the same form as in GL, GH, and H, but now the amplitude function
depends on z1 as well as x1, and a spanwise velocity component w = ε3/2w1 + · · · is
added, where w1 is found in the form

w1 = α−1Re

{[
U ′(y)

U(y)−Uc

φ1(y)− φ′1(y)

]
iAz1

(x1, z1)e
iαζ

}
. (1)

Here φ1(y) is real and satisfies the Rayleigh equation, as in GL, GH, and H; A is a
complex amplitude factor that varies on the larger scales of the variables x1 and z1;
as indicated by the notation Re, the real part is to be taken. Near the critical layer,
as y → 0, φ1 has the same form as in H, and w1 ∼ (αy)−1Re(iAz1

eiαζ). In the equations
for terms of the next order, the coordinate z1 again enters only as a parameter, and
so the equations have the same appearance as for the two-dimensional case. As a
consequence, a solvability condition is obtained in the same form as in equations
(2.14)–(2.16) of H, the only difference lying in the spanwise variation of the amplitude
function A(x1, z1).

The expansions for the flow variables within the critical layer also have the same
form as in GL, GH, and H, but now with the added velocity component w =
εŵ0 + · · · . The solutions for the largest terms εp̂0 and εν̂0 in the pressure and the
transverse velocity component are again just the leading terms in the expansions of
the corresponding outer solutions as y → ±0. The spanwise component Ω of the
vorticity is

Ω = νx − uy = −U ′c + εΩ̂0 + · · · . (2)

The largest terms in the differential equations for w and Ω are then found to give

Lŵ0 = −p̂0z1
, LΩ̂0 = −U ′cŵ0z1

, (3)

where

L = Uc

∂

∂x1

+

(
U ′cY − S1

α

)
∂

∂ζ
+ ν̂0

∂

∂Y
− λ ∂2

∂Y 2
, (4)

and p̂0 = U ′cRe(Aeiαζ), ν̂0 = −αRe(iAeiαζ). The stretching term in the vorticity equation
of course arises from the variation of the spanwise velocity component in the spanwise
direction. As in the references, it is convenient to write the solution for Ω̂0 in the form

Ω̂0 = − 1
2
U ′′′c Y

2 − λU
′′′
c

Uc

x1 − U ′′′c
U ′c

Re(A(x1, z1)e
iαζ)− Q(ζ, Y , x1, z1), (5)

where, as in H, the second term on the right-hand side arises from the slow growth
of mean shear-layer thickness. The equations for ŵ0 and Q become

Lŵ0 = −U ′cRe(Az1
eiαζ), (6)

LQ =
U ′′c
U ′c

Re{(iS1A−UcAx1
)eiαζ)}+U ′cŵ0z1

. (7)

As |Y | → ∞, the largest terms in (6) and (7) show that ŵ0 and Q are both O(1/Y ).
The amplitude function A should match upstream, as x1 → −∞, with the amplitude
predicted by the linear stability theory.

As in GL, GH, and H, the higher harmonics do not enter into the calculation of
the flow in the critical layer, but are determined once the critical-layer flow is known.



376 A. F. Messiter and D. Davis

The function Q is to be multiplied by e−iαζ , then integrated over one period in ζ and
integrated across the critical layer. As in H, the requirement that this result must
agree with the jump found from the main part of the shear layer leads to the relation

1

π
–

∫ ∞
−∞

∫ 2π/α

0

Q(ζ, Y , x1, z1)e
−iαζdζdY = 2iAx1

J1 − (S1A+ iUcAx1
)J2, (8)

where, as in H, the constants J1 and J2 are defined by

J1 =

∫ ∞
−∞
φ2

1dy, J2 =
1

α2
–

∫ ∞
−∞

U ′′

(U −Uc)2
φ2

1dy (9)

and the integral defining J2 is interpreted as a principal value. Although the form of
(8) is the same as obtained in H for the two-dimensional case, the function Q now
depends on z1 as well as x1.

3. Discussion
This, then, is the appropriate formulation for a special limiting case corresponding

to a specific large spanwise length scale, namely O(ε−1/2). The formulation contains
all the terms of the two-dimensional formulation, but the differential equations for
the critical layer are augmented by a stretching term in the vorticity equation and by
a spanwise momentum equation. It is easy to show that the equations reduce to the
two-dimensional formulation if the length scale is allowed to increase. In that case,
all derivatives with respect to z1 approach zero, and the (scaled) spanwise velocity
component ŵ0 also approaches zero. With these terms omitted, the resulting equations
are exactly those for the two-dimensional problem.

In the three-dimensional formulation of GC and Wu et al. where the spanwise length
scale is O(1), the critical-layer thickness and the frequency perturbation are O(ε1/3),
rather than O(ε1/2) as in the two-dimensional case, and the scale for slow streamwise
variations is O(ε−1/3) rather than O(ε−1/2). The differential operator analogous to L
in the equations for w and Ω does not include the term containing ν. As the spanwise
scale becomes large, the GC solution (3.3) for ν, with the substitution (3.7), remains
O(ε), while the orders for the critical-layer thickness and frequency perturbation are
found to decrease, and the slow streamwise scale increases. When the scale is large
enough that the orders of these quantities agree with the orders for two-dimensional
disturbances, the contribution of ν∂/∂Y to the differential operator is no longer of
higher order. This is the case when the spanwise scale, inversely proportional to the
angle θ in GC, has increased to O(ε−1/2). For this condition, it is also seen that the term
νx in the expansion (3.12) of GC for the vorticity Ω is no longer small in comparison
with the perturbation term in uy . Thus the formulation of GC remains correct when
expanded for spanwise length scales that are large, but small in comparison with
ε−1/2, and observation of the failure of this formulation provides an alternative, but
less transparent, way of determining the special length scale chosen here.

The present formulation can be said to match with the previous formulation in
terms of the parameter used to define the spanwise scaling. If the spanwise coordinate
is defined as βz, then the present formulation is consistent with that of GC in the
limit as ε → 0 and β → 0 with β/ε1/2 → ∞ and agrees with the formulation of GL,
GH, and H in the limit as ε→ 0 and β → 0 with β/ε1/2 → 0.
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